allowance for the term P, makes a contribution to the pressure distribution no larger than
0(t“~2/¥z). 1In the present report neither of these corrections was takén into account in
the derivation of the expression for x,. The form of the remaining gasdynamic quantities u;
and u; is fully determined by the distributions of the functions x,, p, and p, and therefore,
no comparison is made for them.

In the general case the agreement established above allows one to effectively construct
a solution to the inverse steady problem any time that a solution is constructed in the cor-
responding unsteady one-dimensional problem.
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SEMIEMPIRICAL THEORY OF THE GENERATION OF DISCRETE TONES BY A SUPERSONIC
UNDEREXPANDED JET FLOWING OVER AN OBSTACLE

V. N. Glaznev and V. S. Demin UDC 533.534.115

§1l. The phenomenon of the generation of a strong discrete tone by a supersonic under-
expanded jet flowing over an obstacle was first discovered by Hartmann [1]. There are pres-
ently a considerable numberof reports devoted to the experimental study of the Hartmann
effect [2-4]. However, the mechanism of formation of these oscillations has not been clari-
fied up to now [2, 5]. An elementary theory of this phenomenon is presented in the present
report.

A diagram of a supersonic underexpanded jet flowing over a flat obstacle is presented
in Fig. 1 (1 is the jet boundary; 2 is the central compression shock (the Mach disk); 3 is
the suspended shock; 4 is the reflected shock; and 5 is the contact discontinuity). The ef-
fect consists in the fact that the flow becomes unstable at certain values of the nozzle
Mach number M,, degree of nonratedness n = p,/pg of the jet (p, is the pressure in the jet
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in the plane of the nozzle cut and pg is the pressure in the space surrounding the jet), and
distance X, = Xo*/ry and size rgy = ro*/r, of the obstacle. The jet boundary and the wave
structure contain periodic oscillations. 1In this case the level of the pressure oscillation
at the obstacle can reach 190-200 dB and in the nearby acoustic field, 170-180 dB.

The following mechanism for the formation of the oscillations is proposed on the basis
of experimental observations. The process develops from small perturbations owing to the
loss of flow stability [6]. In this case the resonator is the region of subsonic flow be-
tween the Mach disk and the obstacle. The sound waves emitted from the resonator into the
outer space reach the nozzle cut and give rise to a perturbation at the jet boundary. Inprop-
agating from the nozzle to the obstacle the perturbations grow in intensity because of the
instability of the jet boundary as a tangential discontinuity. Upon reaching the surface of
the obstacle they are stopped, which gives rise to pressure pulsations at the obstacle. The
interaction of the latter with the oscillations in the resonator at suitable amplitude —phase
ratios leads to the formation of self-oscillations in the system under consideration. The
given scheme of the phenomenon differs from Morch's scheme [7], which was proposed earlier
and did not lead to success, by ‘the introduction of feedback through the outer acoustic field

[6].

§2. We will present a solution which allows one to determine the regions and frequen-
cies of the oscillations. The oscillations in the resonator are assumed to be one-dimension-
al, since according to a motion picture the Mach disk undergoes plane oscillations. To sim-
plify the calculations the Mach number of the flow up to the obstacle is taken as constant
(M ~ 0.5 M,), since not allowing for the distribution of M in the resonator leads to an error
of no more than &~ 5% in the determination of the frequency. With these assumptions the small
perturbations in the resonator can be described by the system of equations [8]

ov/dt + Mov/ot + dp/ok = 0;
oplov + Mop/oE + dvldt = 0,

(2.1)

where p = 8p/kp* and v = év/a are the dimensionless perturbations in pressure and velocity;
K is the adiabatic index; p* and @ are the average pressure and the velocity of sound; & =
x*/L% and T = qt/L* are the dimensionless coordinate and dimensionless time; L* is the length
of the resonator.

The solution of system (2.1) is represented in the form

p=05 [Ap (exp{ B }—l—exp { 55 D + A4, (eXp{— 1\71—64%} — 0Xp {— M_tf_f})] exp {ﬁ‘t}-;

v=0.5[Av(eXP{——M—§—1} TBXP{ i })-l 4 (egpf Mﬁfi}—eXp{ Be })]eXP{IST},

where B = v + iw is the dimensionless frequency of the oscillations; w = 2mfL*/a; M is the
average Mach number on the resonator axis.

(2.2)

Thus, the flow in the resonator is assumed to be one-dimensional flow having a constant
axial velocity.

The boundary condition must be formulated in the cross sectioms £ = 0 and £ = 1. 1Inthe
cross section £ = 0 it can be written in the form
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v+ Mp =0. {2.3)

The acoustic conductance A; of the straight compression shock is determined [9] by the ex-
pression

M3+41
ETY Y
where M; and M, are the Mach numbers in front of the central compression shock and behind it,
respectively. '

Along the boundary of the jet the stream moves with a constant [10] Mach number

h—1
———=
W=} e[ 1.

In this case the pulsations in the pressure p(f = 1) at the obstacle can be connected with
the pulsations in sonic pressure p, at the nozzle face as follows:

p(E = 1) = ppexp{o, + ig:i}. (2.4)

Here ¢, depends on the degree of growth in the amplitude of a perturbation during the propa-
gation of the latter downstream along the jet boundary from the processes of refraction of
the sound wave within the jet and of transformation of the perturbation of the obstacle. The
quantity ¢; represents the phase shift between the pressure oscillation at the nozzle face
and the pressure oscillation at the obstacle.

Equation (2.4) is the boundary condition at & = 1, in which one must still determine the
quantities pp, ¢y, and q4.

§3. It follows from experiment that in the outer space the acoustic waves are emitted
by part of the boundary of the jet reflected from the obstacle, namely, by an annular surface
of width (R;* — R;*) (see Fig. 1). Using the method applied in [11] to calculate the acoustic
field of the piston diaphragm, one can write the sound pressure at the face in the form

Bexp |- pe |

o N g (R R, (3.1

where
ra=rpfra; L= L¥ra; Ry = Rifr; Ry=Rifre; N =N*/a,

(ao is the velocity of sound in the space surrounding the jet; N* is the velocity of the mo~
tion of the emitting surface). In the derivation of Eq. (3.1) it was assumed that the emit-
ting surface is flat, it moves parallel to itself, and the jet does not affect the range of
the sound beams. This is valid if the transverse size of the jet is less than the emitted
wavelength. An estimate of the diffraction of the emitted sound wave on the jet as on an ob-
stacle, made using [12], showed that the perturbing effect of the jet on the acoustic field
can be neglected when the direction of propagation of the sound wave in the outer field is
along the boundary of the incident jet. Thenozzle face has a size much smaller than the wave-
length of the oscillations, and therefore it is considered as sharp, i.e., reflection of the
wave from the nozzle is absent.

In an experimental test of Eq. (3.1) it was established that it satisfactorily describes
the outer acoustic field at a point near the nozzle cut. Experiments using high-speed motion-
picture photography showed that the emitting surface and the Mach disk oscillate in phase and
with the same amplitude, i.e., N* is the velocity of osclllation of the Mach disk, A compar-
ison of the wvalues of p, measured by a pressure pickup at the nozzle face with py calculated
by Eq. (3.1) showed a difference not exceeding 10-15% (depending on the mode of flow). In
these calculations the R, and N entering into Eq. (3.1) were determined experimentally.
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As shown in [9], fhe following equation is valid at a straight compression shock:

NIp(E = 0) = (k + 1)/4M,. (3.2)

Therefore, the boundary condition (2.4) at £ = 1, with allowance for (3.1) and (3.2), can be
written in the form

Bexp|—p L
P(§=1)=P(§‘—':0)k,:1;1 2lr 7 }(Rn—R )exp {or + ip;). . (3.3)

§4. We express ¢, and ¢ ; through the parameters of the steady stream. Keeping in mind
that the basic processes characterizing the development of perturbations in a free jet and a
jet with an obstacle are identical, one can write

¢, = Fio 91 =Fa0i (4.1)

where ¢,' and @' are the growth coefficient and the phase shift for a free jet; F, and F,
are quantities which depend on the processes of transformation of the perturbatioms at the
nozzle face and at the obstacle. The results of [13], devoted to the stability of a free

homogeneous supersonic jet, are used to seek the expressions for ¢,' and ¢;'.

Graphs of the dependence of the real and imaginary parts of the complex quantity k'v*/w*
on the Strouhal number Sh = 2r,f/aoMg for Mg = 1.2-2.4 are presented in the cited report.
Here k' = kr' + iki' is the complex wave number; f is the frequency; w* = 27f3; v* is the
stream velocity along the jet boundary. Since ¢,' is a function of the imaginary part, while
¢1' is a function of the real part of k'v*/w*, by approximating the functions (presented in
[13]) by simple equations (for Sh < 0.2) one can obtain

or =3y L+ 5 IMEShR @i —a)/ 1+’i?—1MS Sh1 - (Ms— 1,2)Sh] L. (4.2)

On the basis of the experimental results presented in [14] one can compare the values of
¢r' and @' calculated from Egs. (4.2) with the experimentally measured values. However, in-
stead of ¢i' it is more convenient to compare the wavelength A = v*/fRe{k'v*/w*}. For exam-
ple, for ry = 2 cm, Sh = 0.18, Mg = 1.73, and antisymmetric oscillations (n =1 in the nota-
tion of [13]) the following values are obtained: measured A = 12.0 cm, calculated A =15.2 cm;
measured 9,.'* = 0.286 cm~!, calculated @,'* = 1.00 cm~'. It follows from the comparison that
the results of [13] do not adequately take into account the true dependence of ¢,' and ¢4' on
the steady parameters of the jet. One can therefore expect that the noted noncorrespondence
between the calculated and measured values of Qr' and ¢ ;' depends systematically on the cited
parameters. Consequently, the quantities ¥, and F., determined experimentally below, must
take into account the noted noncorrespondence in addition to the transformations of the per-
turbations indicated earlier.

The quantity F, was determined by the following method: pressure pickups were mounted
at the nozzle face and at the center of the obstacle. The ratio of amplitudes lp(E l)|/[pn|
= a%r of the measured pressures was calculated for the modes of flow with self-oscillations
and the value of ¢ was calculated. The value of wr' was calculated from Eq. (4.2), withthe
value of the frequency which enters into the Strouhal number being determined from experiment.
It was found that for the different modes of flow the ratio of the measured value ¢y to the
calculated value ¢,' remains unity with an acceptable accuracy if the calculated value ¢y’ is
multiplied by the function F, = MgL.

Following the substitution of the value of F; into (4.1) and transformations, we obtain
the following expression for gy

=095 1AM 4.3)

To find F. the phase velocity was determined (using high-speed motion-picture photography and
using a thermoanemometer). It was established that F, = 1.25. As seen from the example pre-
sented above for a free jet (ry = 2 cm, Sh = 0.18, Mg = 1.73), the ratio of the calculated to
the measured A is also close to 1.25.

790



Following the substitution of the value of F, into the expression for‘P1 (4.1) and trans-
formations, we finally obtain

E=Tpr —1.2
ot =125 Y 1+ B Mg <1+ ) (4.4)

Thus, all the influences on the evolution of a perturbation from the nozzle face to the ob-
stacle are taken into account empirically in Egs. (4.3) and (4.4).

§5. From Egs. (2.2), (2,3), and (3.3) one can obtain the characteristic equation for
the calculation of the regions and frequencies of the self-oscillations in the Hartmann ef-
fect. 1In the case of M; 2> 3.0, which usually occurs in the phenomenon under investigation,
the following inequality is satisfied:

(L= ) exp { — B/ - DY < (L + Ay) exp { — BIM — D).
With this condition the characteristic equation has the form

oxp [0

R P D~ (1 4 — P
431.;'3 — L (RS — R?)exp (g, + iy} = (14 %l)eXP{ =1

We introduce the designations

k1 (RE—n) _a, !
YL RO TRy =T ti/w

and by separating the real and imaginary parts we obtain a system of two equations for the
calculation of v and w:

exp {vip,} cos p0 == Prexp {@, }v cos ¢; — @ sin g;);

. - 5.1
exp {v{,} sin $,0 = Piexp {@, } (o cos p; + v sin ;). G-
For convenience in calculating the roots one can reduce system (5.1) to the form
v = oftg (P,0 — @), (5.2)

exp {2¢,v} = 1P10Xp{2¢,}(v2—k w?).

In this case system (5.2) can have roots which are not roots of the original system (5.1),
If as a result of the solution of system (5.1) it turns out that v < 0, then the jet flow is
stable, while if v > 0, then self-oscillations should develop.

The coefficients in Eqs. (5.1) and (5.2) depend on the average parameters of the jet,
and the latter are assumed to be known.

§6. Let us compare the results of a calculation carried out with the solution of sys-
tem (5.2) with published experimental data. To determine the steady parameters of the jet
required in the calculations we used the empirical functions presented in [15-17]. As a re-
sult of a study of a large number of photographs of the shadow pattern of the flow and the
wave pattern of the emitted acoustic field for jets with the parameters M, = 1-2.0, and n =
1-20, and X, = 4-14 it was assumed that R, = R, for a finite obstacle if the radius of the
Mach disk is larger than or equal to the radius of the obstacle. If the radius of the ob-
stable is larger than the radius of the Mach disk but smaller than (3/2)R,, then R, = 2r,.
If ry > (3/2)R,, then R, = 2R, when R; <X 0.57 or R, = 0.57 when R; > 0.57. 1In the latter
case the meaning of the assignment of the quantity R, is connected with the fact that the
width of the annulus of the emitter must not be larger than one fourth the wavelength of the
radiation.

The curve of neutral stability for M, = 1.5 and r, = 1.25 is presented in Fig. 2. The
curve obtained by calculation is drawn with a solid line. The experimental points are bor-
rowed from [3]. The curve of neutral stability for My, = 2.0 and an infinite obstacle is pre-
sented in Fig. 3. The solid line is obtained by calculation and the dashed line is obtained
experimentally [4]. The dependence of the dimensional frequency of the oscillation on the
distance between the nozzle and the obstacle is presented in Fig. 4 for an infinite obstacle,
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a Mach number My = 2.0, and two values of the nonratedness of the jet m = 2.0 (dashed curve)
and n = 7.55 (solid curve). The experimental points (squares for n = 2.0 and circles for

n = 7.55) are taken from [18]. It follows from a comparison of the calculated

and experimental data that the theory presented correctly reflects the basic properties
of the phenomenon under study and gives satisfactory quantitative agreement with experiment.
Thus, it is seen from Fig. &4 that as the obstacle gets farther from the nozzle face (X, grows)
and with a fixed nonratedness (let n = 7 55), self-oscillations of high frequency but, as shown
by experiment, low intensity develop at a certain value of X, The frequency of these oscil-
lations declines monotonically with an increase in X,. At a certain value of X, the frequen-
cy of the oscillations decreases abruptly and, as shown by experiment, the amplitude increases
sharply. Such oscillations have come to be called the Hartmann effect. With a further in-
crease in Xy the frequency of the oscillations declines monotonically and the amplitude de-
creases. Succeeding modes are then added to the fundamental mode and in certain sections one
can detect two oscillation modes. With a further increase in X, the zeroth mode disappears
and the second mode continues to sound. The first mode was not detected in the experiment,
although the calculation shows the possibility of its existence (but the calculation cannot
indicate the intensity of the possible oscillation). For n = 2 the experiment reveals the
zeroth and first modes, as seen from Fig. 4.

It is evident that the boundaries of the region of self-oscillations presented in Figs. 2
and 3 are not lines separating the zones of the presence and absence of oscillations having a
discrete tone. They only distinguish the region of existence of the zeroth mode of oscilla-
tions which has the highest intensity.
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SOME SIMILARITY PROBLEMS OF THE UNSTEADY BOUNDARY LAYER

é. V. Prozorova uDC 533.6

It was shown in [1] that problems of the nonstationary boundary layer are similarity
problems for impulsive motion of an incompressible fluid and motions accelerating with a
power law. Some results for an incompressible fluid are presented below.

§1. We consider motion of a semiinfinite flat plate in a compressible liquid, impul-
sively set into motion. The system of equations for this case [2] is as follows:

- Ha”');

Pl—= ltm?'-rli??/'

au o ou | ou
at

S
I
Sl
T
2|

'6_t+'67(pu'

oh ah ah duN2 . 0 [ Oh),.
et o) ()
u=U, v=0 for y=0¢t=0
u=0 v=20 for y=0,1>0;

w=U, h=~"0L, y-—oo.

The notation is conventional; the viscosity u, the thermal conductivity ), and the equation
of state are all arbitrary functions of temperature and density. We choose

Leningrad. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6,
pp. 56-60, November-December, 1976. Original article submitted December 24, 1975.

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 1 7th Street, New York, N.Y.
10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is
available from the publisher for $7.50.

793



