
allowance for the term P~ makes a contribution to the pressure distribution no larger than 
0(~4-2/~). In the present report neither of these corrections was taken into account in 
the derivation of the expression for xl. The form of the remaining gasdynamic quantities u~ 
and u2 is fully determined by the distributions of the functions x2, p, and p, and therefore, 
no comparison is made for them. 

In the general case the agreement established above allows one to effectively construct 
a solution to the inverse steady problem any time that a solution is constructed in the cor- 
responding unsteady one-dimensional problem. 
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SEMIEMPIRICAL THEORY OF THE GENERATION OF DISCRETE TONES BY A SUPERSONIC 

UNDEREXPANDED JET FLOWING OVER AN OBSTACLE 

V. N. Glaznev and V. S. Demin UDC 533.534.115 

w The phenomenon of the generation of a strong discrete tone by a supersonic under- 
expanded jet flowing over an obstacle was first discovered by Hartmann [i]. There are pres- 
ently a considerable numberof reports devoted to the experimental study of the Hartmann 
effect [2-4]. However, the mechanism of formation of these oscillations has not been clari- 
fied up to now [2, 5]. An elementary theory of this phenomenon is presented in the present 
report. 

A diagram of a supersonic underexpanded jet flowing over a flat obstacle is presented 
in Fig. 1 (i is the jet boundary; 2 is the central compression shock (the Mach disk); 3 is 
the suspended shock; 4 is the reflected shock; and 5 is the contact discontinuity). The ef- 
fect consists in the fact that the flow becomes unstable at certain values of the nozzle 
Mach number Ma, degree of nonratedness n = pa/Ps of the jet (Pa is the pressure in the jet 
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F i g .  1 

i n  t h e  p l a n e  o f  t h e  n o z z l e  c u t  and  Ps  i s  t h e  p r e s s u r e  i n  t h e  s p a c e  s u r r o u n d i n g  t h e  j e t ) ,  and  
d i s t a n c e  X o = X o * / r  a a n d  s i z e  r o = r o * / r  a o f  t h e  o b s t a c l e .  The  j e t  b o u n d a r y  and  t h e  wave  
structure contain periodic oscillations. In this case the level of the pressure oscillation 
at the obstacle can reach 190-200 dB and in the nearby acoustic field, 170-180 dB. 

The following mechanism for the formation of the oscillations is proposed on the basis 
of experimental observations. The process develops from small perturbations owing to the 
loss of flow stability [6]. In this case the resonator is the region of subsonic flow be- 
tween the Mach disk and the obstacle. The sound waves emitted from the resonator into the 
outer space reach the nozzle cut and give rise to a perturbation at the jet boundary. In prop- 
agating from the nozzle to the obstacle the perturbations grow in intensity because of the 
instability of the jet boundary as a tangential discontinuity. Upon reaching the surface of 
the obstacle they are stopped, which gives rise to pressure pulsations at the obstacle. The 
interaction of the latter with the oscillations in the resonator at suitable amplitude --phase 
ratios leads to the formation of self-oscillations in the system under consideration. The 
given scheme of the phenomenon differs from Morch's scheme [7], which was proposed earlier 
and did not lead to success, by the introduction of feedback through the outer acoustic field 
[6] .  

w We will present a solution which allows one to determine the regions and frequen- 
cies of the oscillations. The oscillations in the resonator are assumed to be one-dimension- 
al, since according to a motion picture the Mach disk undergoes plane oscillations. To sim- 
plify the calculations the Mach number of the flow up to the obstacle is taken as constant 
(M ~0.5 M2), since not allowing for the distribution of M in the resonator leads to an error 
of no more than~5% in the determination of the frequency. With these assumptions the small 
perturbations in the resonator can be described by the system of equations [8] 

OvlO'~ + MOv/O~ + @lO~ = 0 ;  

@10~: + MOplO~ § OvlO~ = O, 
( 2 . 1 )  

where p = ~p/kp* and v = ~v/a are the dimensionless perturbations in pressure and velocity; 
k is the adiabatic index; p* and a are the average pressure and the velocity of sound; ~ = 
x*/L* and T = at/L* are the dimensionless coordinate and dimensionless time; L* is the length 

of the resonator. 

The' solution of system (2.1) is represented in the form 

(2.2) 

v = 0 . 5 [ A v ( e x p ( - - M + ~ i } + e x p [ - - ~ } ) + A p ( e x p { - - M - - ~ i } - - e x p { - - M J ~ i } ) ]  e x p { ~ } '  

w h e r e  B = v + i ~  i s  t h e  d i m e n s i o n l e s s  f r e q u e n c y  o f  t h e  o s c i l l a t i o n s ;  ~ -- 2 ~ f L * / a ;  M i s  t h e  
a v e r a g e  Mach n u m b e r  on  t h e  r e s o n a t o r  a x i s .  

T h u s ,  t h e  f l o w  i n  t h e  r e s o n a t o r  i s  a s s u m e d  t o  b e  o n e - d i m e n s i o n a l  f l o w  h a v i n g  a c o n s t a n t  

a x i a l  v e l o c i t y .  

The  b o u n d a r y  c o n d i t i o n  m u s t  b e  f o r m u l a t e d  i n  t h e  c r o s s  s e c t i o n s  ~ = 0 and  ~ = 1 .  I n  t h e  
c r o s s  s e c t i o n  ~ = 0 i t  c a n  b e  w r i t t e n  i n  t h e  f o r m  
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v + ~ i P = 0 .  (2.3) 

The acoustic conductance %1 of the straight compression shock is determined [9] by the ex- 
pression 

2 M ~ M 2 '  

w h e r e  M1 and  M2 a r e  t h e  Mach n u m b e r s  i n  f r o n t  o f  t h e  c e n t r a l  c o m p r e s s i o n  s h o c k  and  b e h i n d  i t ,  
respectively. 

Along the boundary of the jet the stream moves with a constant [i0] Mach number 

Ms = l + k @ - t M  n ~ - - t .  

In this case the pulsations in the pressure p(( = i) at the obstacle can be connected with 
the pulsations iN sonic pressure Pn at the nozzle face as follows: 

p(~ = t) = Pnexp {% q- iq0{}. (2.4) 

Here ~r depends on the degree of growth in the amplitude of a perturbation during the propa- 
gation of the latter downstream along the jet boundary from the processes of refraction of 
the sound wave within the jet and of transformation of the perturbation of the obstacle. The 
quantity ~i represents the phase shift between the pressure oscillation at the nozzle face 
and the pressure oscillation at the obstacle. 

Equation (2.4) is the boundary condition at ~ = I, in which one must still determine the 
quantities Pn, ~ r, and ~i o 

~3. It follows from experiment that in the outer space the acoustic waves are emitted 
by part of the boundary of the jet reflected from the obstacle, namely, by an annular surface 
of width (R2* -- Rx*) (see Fig. i). Using the method applied in [ii] to calculate the acoustic 
field of the piston diaphragm, one can write the sound pressure at the face in the form 

~-- 8 rn t 
Pn := N-  6 exp ~ ~-L--J (B~ --  R~), ( 3 . 1 )  

2~L �9 

where 

r n - -  rn/ra; L : -  L* / r~;  R t -= R~/r~;  R 2 := M2/ra; iV = N*/a  o 

(ao is the velocity of sound in the space surrounding the jet; N* is the velocity of the mo- 
tion of the emitting surface). In the derivation of Eq. (3.1) it was assumed that the emit- 
ting surface is flat, it moves parallel to itself, and the jet does not affect the range of 
the sound beams. This is valid if the transverse size of the jet is less than the emitted 
wavelength. An estimate of the diffraction of the emitted sound wave on the jet as on an ob- 
stacle, made using [12], showed that the perturbing effect of the jet on the acoustic field 
can be neglected when the direction of propagation of the sound wave in the outer field is 
along the boundary of the incident jet. The nozzle face has a size much smaller than the wave- 
length of the oscillations, and therefore it is considered as sharp, i.e., reflection of the 
wave from the nozzle is absent. 

In an experimental test of Eq. (3.1) it was established that it satisfactorily describes 
the outer acoustic field at a point near the nozzle cut. Experiments using high-speed motion- 
picture photography showed that the emitting surface and the Mach disk oscillate in phase and 
with the same amplitude, i.e., N* is the velocity of oscillation of the Mach disk, A compar- 
ison of the values of Pn measured by a pressure pickup at the nozzle face with Pn calculated 
by Eq. (3.1) showed a difference not exceeding 10-15% (depending on the mode of flow). In 
these calculations the R2 and N entering into Eq. (3.1) were determined experimentally. 
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As shown in [9], the following eNuation is valid at a straight compression shock: 

N/p(~ = o) = (~ + O/4M~ (3.2) 

Therefore, the boundary condition (2.4) at ~ = i, with allowance for (3.1) and (3.2), can be 
written in the form 

n~k+i~exp{--~- L- 
p ( ~ = l ) = p ( ~  =~ ,  %--~; 2~L ( R ~ - - R ~ ) e x p  {~r + t~'}" ( 3 . 3 )  

w We express ~r and T i through the parameters of the steady stream. Keeping in mind 
that the basic processes characterizing the development of perturbations in a free jet and a 
jet with an obstacle are identical, one can write 

t 

~r = F ~ r ;  ~ = F ~ ,  (4.1) 

where ~r' and~i' are the growth coefficient and the phase shift for a free jet; F~ and F2 
are quantities which depend on the processes of transformation of the perturbations at the 
nozzle face and at the obstacle. The results of [13], devoted to the stability of a free 
homogeneous supersonic jet, are used to seek the expressions for ~r' and ~i'" 

Graphs of the dependence of the real and imaginary parts of the complex quantity k'v*/m* 
on the Strouhal number Sh = 2raf/aoM s for M s = 1.2-2.4 are presented in the cited report. 
Here k' = kr' + iki' is the complex wave number; f is the frequency; ~* = 2~f; v* is the 
stream velocity along the jet boundary. Since ~r' is a function of the imaginary part, while 
@i' is a function of the real part of k'v*/~*, by approximating the functions (presented in 
[13]) by simple equations (for Sh < 0.2) one can obtain 

e 

~ , = 3 ~  +k2lM2(Sh)~-/;-- ~ i = n V r i + k 2 t M  2s Sh[ l~- '  ( M s - - l , 2 ) S h ] l .  (4.2) 

On the basis of the experimental results presented in [14] one can compare the values of 
�9 r' and ~ i' calculated from Eqs. (4.2) with the experimentally measured values. However, in- 
stead of ~i' it is more convenient to compare the wavelength X = v*/~Re{k'v*/m*}. For exam- 
ple, for r a = 2 cm, Sh = 0.18, M s = 1.73, and antisymmetric oscillations (n = i in the nota- 
tion of [13]) the following values are obtained: measured X = 12.0 cm, calculated ~ = 15.2 cm; 
measured Tr'* = 0.286 cm -~, calculated ~r'* = 1.00 cm -~. It follows from the comparison that 
the results of [13] do not adequately take into account the true dependence of qr' and ~i' on 
the steady parameters of the jet. One can therefore expect that the noted noncorrespondence 
between the calculated and measured values of ~r' and ~ i' depends systematically on the cited 
parameters. Consequently, the quantities F~ and F2, determined experimentally below, must 
take into account the noted noncorrespondence in addition to the transformations of the per- 
turbations indicated earlier. 

The quantity F~ was determined by the following method: pressure pickups were mounted 
at the nozzle face and at the center of the obstacle. The ratio of amplitudes IP(~ = l) I/IPn] 
= e~r of the measured pressures was calculated for the modes of flow with self-oscillations 
and the value of ~r was calculated. The value of ~r' was calculated from Eq. (4.2), with the 
value of the frequency which enters into the Strouhal number being determined from experiment. 
It was found that for the different modes of flow the ratio of the measured value ~r to the 
calculated value ~r' remains unity with an acceptable accuracy if the calculated value ~r' is 
multiplied by the function F, = MsL. 

Following the substitution of the value of FI into (4.1) and transformations, we obtain 
the following expression for T r: 

i , k--i..2 ~2 (4.3) % = 0.955 I ~ - - 5 - m s ~ .  

T o f i n d  F2 t h e  phase  v e l o c i t y  was d e t e r m i n e d  ( u s i n g  h i g h - s p e e d  m o t i o n - p i c t u r e  p h o t o g r a p h y  and 
u s i n g  a t h e r m o a n e m o m e t e r ) .  I t  was e s t a b l i s h e d  t h a t  F2 = 1 . 2 5 .  As s e e n  f rom th e  example  p r e -  
s e n t e d  above  f o r  a f r e e  j e t  ( r  a = 2 cm, Sh = 0 . 1 8 ,  M s = 1 . 7 3 ) ,  t h e  r a t i o  o f  t h e  c a l c u l a t e d  to  
t he  measu red  X i s  a l s o  c l o s e  t o  1 . 2 5 .  
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Following the substitution of the value of F= into the expression for q)i (4.1) and trans- 
formations, we finally obtain 

(4.4) 

Thus, all the influences on the evolution of a perturbation from the nozzle face to the ob- 
stacle are taken into account empirically in Eqs. (4.3) and (4.4). 

w From Eqs. (2.2), (2,3), and (3.3) one can obtain the characteristic equation for 
the calculation of the regions and frequencies of the self-oscillations in the Hartmann ef- 
fect. In the case of M:~ 3.0, which usually occurs in the phenomenon under investigation, 
the following ineqaality is satisfied: 

I ( l - - ) ~ ) e x p  { - ~ / ( M  i- l) }l << [(1 + ~ l )  exp { - - [ ~ / ( M - -  l)}l. 

With this condition the characteristic equation has the form 

I rn 

We i n t r o d u c e  t h e  d e s i g n a t i o n s  

4M~ rnL(l + ~.~) ' ~2 = ~ q- t - -  M 

and by separating the real and imaginary parts we obtain a system of two equations for the 
calculation of v and ~: 

exp {v~z} cos ~z(o =: ~lexp {q)r}(V cos qh - -  o) sin q)i); 

exp {vq)2} sin ~p~) = ~plexp {%}((o cos q~ + v sin q~i). (5.1) 

For convenience in calculating the roots one can reduce system (5.1) to the form 

exp {2~v} = $~ exp {2~r } (v ~ + ~ ) .  

I n  t h i s  c a s e  s y s t e m  ( 5 . 2 )  c a n  h a v e  r o o t s  w h i c h  a r e  n o t  r o o t s  o f  t h e  o r i g i n a l  s y s t e m  ( 5 . 1 ) .  
If as a result of the solution of system (5.1) it turns out that ~ < 0, then the jet flow is 
stable, while if ~ > 0, then self-oscillations should develop. 

The coefficients in Eqs. (5.1) and (5.2) depend on the average parameters of the jet, 
and the latter are assumed to be known. 

w Let us compare the results of a calculation carried out with the solution of sys- 
tem (5.2) with published experimental data. To determine the steady parameters of the jet 
required in the calculations we used the empirical functions presented in [15-17]. As a re- 
sult of a study of a large number of photographs of the shadow pattern of the flow and the 
wave pattern of the emitted acoustic field for jets with the parameters M a = 1-2.0, and n = 
1-20, and X o = 4-14 it was assumed that R2 = RI for a finite obstacle if the radius of the 
Mach disk is larger than or equal to the radius of the obstacle. If the radius of the ob- 
stable is larger than the radius of the Mach disk but smaller than (3/2)RI, then R= = 2r o. 
If r o > (3/2)RI, then R2 = 2Rx when RI~0.5Z or R2 = 0.51 when RI > 0.51. In the latter 
case the meaning of the assignment of the quantity R= is connected with the fact that the 
width of the annulus of the emitter must not be larger than one fourth the wavelength of the 
radiation. 

The curve of neutral stability for M a = 1.5 and r o = 1.25 is presentedin Fig. 2. The 
curve obtained by calculation is drawn with a solid line. The experimental points are bor- 
rowed from [3]. The curve of neutral stability for M a = 2.0 and an infinite obstacle is pre- 
sented in Fig. 3. The solid line is obtained by calculation and the dashed line is obtained 
experimentally [4]. The dependence of the dimensional frequency of the oscillation on the 
distance between the nozzle and the obstacle is presented in Fig. 4 for an infinite obstacle, 
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a Mach number M a = 2.0, and two values of the nonratedness of the jet n = 2.0 (dashed curve) 
and n = 7.55 (solid curve). The experimental points (squares for n = 2.0 and circles for 
n = 7.55) are taken from [18]. It follows from a comparison os the calculated 
and experimental data that the theory presented correctly reflects the basic properties 
of the phenomenon under study and gives satisfactory quantitative agreement with experiment. 
Thus, it is seen from Fig. 4 that as the obstacle gets farther from the nozzle face (X o grows) 
and with a fixed nonratedness (let n = 7.55), self-oscillatlons of high frequency but, as shown 
by experiment, low intensity develop at a certain value of X o. The frequency of these oscil- 
lations declines monotonically with an increase in X o. At a certain value of Xo the frequen- 
cy of the oscillations decreases abruptly and, as shown by experiment, the amplitude increases 
sharply. Such oscillations have come to be called the Hartmann effect. With a further in- 
crease in X o the frequency of the oscillations declines monotonically and the amplitude de- 
creases. Succeeding modes are then added to the fundamental mode and in certain sections one 
can detect two oscillation modes. With a further increase in X o the zeroth mode disappears 
and the second mode continues to sound. The first mode was not detected in the experiment, 
although the calculation shows the possibility of its existence (but the calculation cannot 
indicate the intensity of the possible oscillation). For n = 2 the experiment reveals the 
zeroth and first modes, as seen from Fig. 4. 

It is evident that the boundaries of the region of self-oscillations presented in Fig~ 2 
and 3 are not lines separating the zones of the presence and absence of oscillations having a 
discrete tone. They only distinguish the region of existence of the zeroth mode of oscilla- 
tions which has the highest intensity. 

LITERATURE CITED 

i. J. Hartmann and B. Trolle, "New investigation on the jet generator for acoustic waves," 
Det. Kgl. Danske Videnskabernes Selekab. Math.-Fys. Meddelelser., ~, 6 (1926). 

2. Yu. Ya. Borisov, "Sources of powerful ultrasound," in: Physics and Technology of Power- 
ful' Ultrasound [in Russian], Part i, Nauka, Moscow (1967), p. 9. 

3. A.G. Golubkov, B. K. Koz'menko, V. A. Ostapenko, and A. V. Solotchin, "Interactinn of 
a supersonic underexpanded jet with a flat finite obstacle," Izv. Sibirsk. Otd. Akad. 
Nauk SSSR, Ser. Tekh. Nauk, Part 3, No. 13, 52 (1972). 

4. B.G. Semiletenko and V. N. Uskov, "Experimental functions determining the position of 
shock waves in a jet flowing over an obstacle perpendicular to its axis," Inzh.-Fiz. Zh., 
23, No. 3, 453 (1972). 

5. V.G. Dulov, "Motion of a triple configuration of shock waves with the formation of a 
wake behind the branching point," Zh. Prikl. Mekh. Tekh. Fiz., No. 6, 67 (1973). 

6. V.N. Glaznev, V. S. Demin, and N. A. Zheltukhin, "On the theory of the Hartmann jet 
generator," Izv. Sibirsk. Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk, Part 3, No. 13, 138 
(1973). 

7. K.A. Morch, "A theory for the mode of operation of the Hartmann air jet generator," J. 
Fluid Mech., 20, (1964). 

8. B.V. Raushenbakh, Vibrational Combustion [in Russian], GIFML, Moscow (1961). 

792 



9. A. P. Skabin and V, A. Tarasyuk, "Interaction of acoustic perturbations with a shock 
wave," Tr. Leningr. Politekh. Inst. Aerotermodin., No. 313 (1970). 

i0. I. P. Ginzburg, Aerogas Dynamics [in Russian], Vyssh. Shkola, Moscow (1966), pp. 318- 
320. 

ii. S. N. Rzhevkin, A Course of Lectures on the Theory of Sound [in Russian], Izd. Mosk. 
Univ. (1960). 

12. L.M. Lyamshev, "On the theory of sound scattering by a thin rod," Akust. Zh., 3, No. 4 
(1956). 

13. T. Kh. Sedel'nikov, "On the discrete component of the noise frequency spectrum of a free 
supersonic jet," in: Physics of Aerodynamic Noise [in Russian], Nauka, Moscow (1967). 

14. V. N. Glaznev, "Some laws of the propagation of perturbations of a discrete tone in a 
free supersonic jet," Izv. Sibirsk. Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk, Part 2, No. 8, 
37 (1972). 

15. Yu. P. Finat'ev and L. A. Shcherbakov, "On the possibility of approximating the bound- 
ary of an underexpanded axisymmetric jet by the arc of an ellipse," Inzh.-Fiz. Zh., 17, 
No. 4 (1969). 

16. V. S. Avduevskii, A. V. Ivanov, I. M. Karpman, V. D. Traskovskii, and M. Yao Yudelovich, 
"Flow in a supersonic viscous underexpanded jet," Izv. Akad. Nauk SSSR, Mekh. Zhidk. 
Gaza, No. 3 (1970). 

17. V. A. Ostapenko and A. V. Solotchin, "Force action of a supersonic underexpanded jet on 
a flat obstacle," Izv. Sibirsk. Otd. Akad. Nauk SSSR, Part 3, No. 13 (1974). 

18. B. G. Semiletenko, B. N. Sobkolov, and V. N. Uskov, "Properties of the unstable inter- 
action of a supersonic jet with an unbounded obstacle," Izv. Sibirsk. Otd. ~ad. Nauk 
SSSR, Part 3, No. 13 (1972). 

SOME SIMILARITY PROBLEMS OF THE UNSTEADY BOUNDARY LAYER 

E. V. Prozorova I~DC 533.6 

It was shown in [i] that problems of the nonstationary boundary layer are similarity 
problems for impulsive motion of an incompressible fluid and motions accelerating with a 
power law. Some results for an incompressible fluid are presented below. 

w We consider motion of a semiinfinite flat plate in a compressible liquid, impul- 
sively set into motion. The system of equations for this case [2] is as follows: 

Pkot+u~-x-r'v-$f =-$f ~EF; 
ap a , a 

a--/+ T~ (~u) -r ~ (~v) = O; 

(Oh,+ oh Oh) " o~ ' ~ o ( o h )  

u = U e ,  v = O  for g = 0 ,  t = O; 

u = O, v = 0 for y = O, t > 0 ;  

u = Ue, h =-he,  g--+oo.  

The notation is conventional; the viscosity ~, the thermal conductivity k, and the equation 
of state are all arbitrary functions of temperature and density. We choose 
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